Title : Guaranteed properties of dynamical systems under perturbations.
Date: Wednesday, May 3rd, 2023 – 14h00.
Place: B013
Abstract : Since dynamical systems has a major impact on human development, especially critical systems that can put human lives at risk if something goes wrong. Hence, the need of studying the behavior of these systems in order to guarantee their correct functioning. Nevertheless, computing such type of system has never been an easy task, as the complexity of these systems is constantly increasing, in addition to the perturbations that may arise during their performance, as well as undefined parameters that may exist. To ensure that a system always produces the expected results and does not fail in any way, a formal verification of its behavior and properties is necessary. In this work, we study the schedulability of the flight control of a space launcher with unknown parameters and under constraints. Then, we propose a synthesis of the admissible timing values of the unknown parameters by a parametric timed model checker. We increase the complexity of the problem by taking into consideration the switch time between two threads. We extend this work by developing a tool that translates a given real-time system design into parametric timed automata in order to infer some timing constraints ensuring schedulability.